On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems
نویسندگان
چکیده
The problem of finding Lie point symmetries for a certain class multi-dimensional nonlinear partial fractional differential equations and their systems is studied. It assumed that considered involve derivatives with respect to only one independent variable, each equation contains single derivative. most significant examples such are time-fractional models processes memory power-law type. Two different types derivatives, namely Riemann–Liouville Caputo, used in this study. proved any symmetry group admitted by or belonging consists linearly-autonomous symmetries. Representations the coordinates corresponding infinitesimal generators, as well simplified determining given explicit form. obtained results significantly facilitate systems. Three physical illustrate point.
منابع مشابه
on the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملApplication of the linear Differential Equations on the Plane and Elements of Nonlinear Systems, In Economics
In recent years, it has become increasingly important to incorporate explicit dynamics in economic analysis. These two tools that mathematicians have developed, differential equations and optimal control theory, are probably the most basic for economists to analyze dynamic problems. In this paper I will consider the linear differential equations on the plane (phase diagram) and elements of nonl...
متن کاملexact and numerical solutions of linear and non-linear systems of fractional partial differential equations
the present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. the proposed scheme is based on laplace transform and new homotopy perturbation methods. the fractional derivatives are considered in caputo sense. to illustrate the ability and reliability of the method some examples are provided. the results ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10132319